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Computing counterion densities at intermediate coupling
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By decomposing the Coulomb interaction into a long-distance component appropriate for mean-field theory,
and a non-mean-field short distance component, we compute the counterion density near a charged surface for
all values of the counterion coupling parameter. A modified strong-coupling expansion that is manifestly finite
at all coupling strengths is used to treat the short-distance component. We find a nonperturbative correction
related to the lateral counterion correlations that modifies the density at intermediate coupling.
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I. INTRODUCTION

The rise of biological physics has rekindled the long-
standing interest in aqueous electrostatics [1]. Poisson-
Boltzmann mean-field theory fails to describe a number of
striking phenomena, such as charge inversion [2,3] and
counterion-mediated attraction [4—14], that occur when
strong correlations develop between multivalent counterions.
Although there has been some success understanding aspects
of counterion correlations using a variety of theoretical tech-
niques [2-19] a physically transparent, quantitative theory
spanning the entire range of counterion behavior is still lack-
ing.

For quite some time, integral equations have provided a
quantitative approach to computing charge densities near
charge surfaces [4,5]. The drawback of these techniques,
however, is their reliance on the summation of subclasses of
cluster diagrams whose physical content is often unclear
[20]. This has prompted a flurry of subsequent work based
on a more direct physical understanding of counterion corre-
lations [2,15], leading to approximations that are less quan-
titatively successful but seem to capture essential physics.

The introduction of field-theoretic methods to charged
systems has led to the development of two systematic pertur-
bation expansions valid in the limits of weak coupling (WC)
[16,17], where mean-field theory is nearly valid, and strong
coupling (SC) [18], where the ions are strongly associated
with “fixed” macromolecular charge. For charged surfaces,
the validity of each expansion is controlled by a single di-
mensionless coupling constant I'=1;0%/\, where I is the
Bjerrum length, ;07 is the distance at which two charges Qe
interact with energy k7T, and N is the Gouy-Chapmann
length, which represents the characteristic distance of the
counterions from the surface.

While the WC expansion (I'<<1) can be understood in
terms of charge density fluctuations around solutions to the
Poisson-Boltzmann equation, the SC expansion (I'> 1) finds
its success in perturbatively introducing counterion interac-
tions through a Mayer cluster expansion [18]. Since the ions
interact at long range, this expansion diverges term by term;
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however, in the case of the one-component plasma, the di-
vergences can be subtracted by enforcing overall charge neu-
trality. Numerical simulations have demonstrated that this
scheme not only correctly predicts the average counterion
density in the strong-coupling limit, it also computes the
form, but not the magnitude, of the corrections [22]. Finally,
Burak et al. [19] have introduced a test-charge theory (TCT)
which successfully reproduces both the long- and short-
distance limits for the counterion density, though it fails to
accurately capture the charge contact density at the surface,
which is known exactly for a charged surface in a semi-
infinite space.

This paper introduces an alternative method to compute
the counterion density in the coupling regime where neither
the SC nor WC expansion is valid. This is accomplished by
decomposing the Coulomb interaction into long- and short-
distance components in the spirit of the Weeks-Chandler-
Andersen theory of simple fluids [21]. This decomposition
seamlessly joins the perturbative weak-coupling [17] and
strong-coupling [18,22] expansions, and provides a natural
framework to understand how to develop simple continuum
theories that, nevertheless, capture the essential physics of
short-distance counterion correlations. Similar decomposi-
tion schemes have been introduced in the context of interact-
ing electrons, allowing the combination of density functional
theory at short distances with techniques valid only at long
distances [23].

My method has the advantage of naturally allowing a
more intuitive understanding of counterion correlations in
order to make quantitative predictions in a range of physi-
cally relevant conditions. In contrast, the traditional SC ex-
pansion [18] is physically difficult to understand because it is
formally a cluster expansion. One naively expects it to be
invalid precisely when the counterions are strongly interact-
ing since the density of ions near a charged surface in the
strong-coupling limit will be quite large and the counterions
will be strongly correlated laterally. I will also introduce a
modified expansion that is manifestly finite but recovers the
SC corrections in the appropriate limit. By rewriting the
strong-coupling expansion as an expansion in a different pa-
rameter, | identify a nonperturbative correction to the density
which is related to the short-distance correlations of the
counterions [3]. This naturally leads to a physical interpreta-
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tion of the corrections to the SC expansion as an expansion
in the density of counterions making excursions away from
the surface. In the SC limit, these excursions are rare and the
corrections to the SC limit are small even when the counte-
rions near the surface are highly correlated. This approxima-
tion gives good quantitative agreement with simulations at
large but intermediate coupling (I'= 10).

In Sec. II, I introduce the decomposition by mapping the
one-component plasma to a one-parameter family of field
theories. In Sec. III, I discuss appropriate expansions for the
short-distance part of the Coulomb interaction. I will make
contact with the SC expansion, and introduce an alternative
expansion which is manifestly finite as the coupling constant
becomes large. In Sec. IV, I quantitatively explore the charge
density near a charged surface and compare the results to
simulations. Finally, in Sec. V, I summarize the results and
discuss some outstanding issues.

II. THE MODEL

Consider the primitive model for a charged surface neu-
tralized by pointlike counterions of the opposite charge Qe in
a dielectric medium with dielectric constant €. We define the
Bjerrum length Iy=e?/(ekyT), and note that IzQ? is the dis-
tance that two charges of valence Q interact with an energy
kgT. To proceed, introduce a length scale ¢, and define
V,(r)=150%"%/r and V,(r)=150*(1—¢~""%)/r. The length ¢
is currently arbitrary and will be chosen later to optimize the
calculation. The Hamiltonian for ions of charge Qe centered
at positions R,, interacting with a surface of charge density
nAr)=0d(z) is given by

Hes f &rd P NE)V,r-1') + V(e - )N, (1)

where N(r)=nqr)/Q-2,8r-R,). It is understood in this
expression that ion self-interactions, which arise only from
V(r), are to be neglected.

The long-range interaction can be decoupled by introduc-
ing a continuous field ¢ through a Hubbard-Stratonovich
transformation, resulting in the partition function for N ions
of radius a,

3

where §'=S,+S,,
S, = fcﬁ "y (e I)—Ln -
2 0
-y j Pr)Vy(r - R0+
@ a<p
(2)
and
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Since the first term of S; plays no role in the counterion
density, we will suppress it in the remainder of the paper.
The counterion positions R, are implicitly restricted to be
over the volume of space that can be occupied by the coun-
terions. I impose the boundary condition that derivatives of
¢ vanish at infinity. From Eq. (3), the integral over the con-
stant mode of ¢ leads to the condition that
Jd*x n(x)=0—only charge neutral configurations can occur.

To proceed, I will utilize the grand canonical ensemble
Z=3,eP*ZyIN!. Notice, however, that if I use Eq. (2) for Zy,
all terms of this sum vanish unless N is such that the entire
system is charge neutral. This is a direct consequence of the
boundary conditions on ¢ and Gauss’ law—if the electric
field vanishes at infinity, nonneutral configurations make no
contribution.

As in the case of €=0 [17], it is useful to retain the full
sum over N in the grand partition function Z, now written as

N N
) f D¢H dsRaPO(ra)e_S,’ (4)

a=1

Zx

% N! (4 mlpQ*
where the length x~! is defined by «*/(4mlzQ0%) =eP*/a?, a is
the de Broglie thermal wavelength of the ions, and u is the
chemical potential [17]. Now define the partial partition

function with integrals only over the counterion positions,

1
Z.Y:NEzoﬁ DR exp(— > vs<Ra—Rﬁ)), (5)

a<pf

where DR=I1,d°Rpy(R,),

K2 F+i
= i 6
Po 47TlBQ2e ) ( )
and
F(r)= f d&r'v(|r’ = x))ndr")/Q. (7)
This leaves Zx [D¢ e~5, where

1
4707

2
f d3r(%(V¢)2 v %(v%)z) ~In Z[py(r)]-
(8)

It is also straightforward to derive an expression for the av-
erage counterion density, which turns out to be {p(r))
=81n Z,/ 5F(r).

Equation (8) provides a one-parameter family of equiva-
lent and exact field-theoretic formulations of the one-
component plasma in an externally imposed field. When ¢
=0, this expression recovers the traditional mapping of the
one-component plasma to a scalar field theory [17]. For finite
€, the additional higher-order gradient of ¢ “turns off” the
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Coulomb interaction between ions mediated by the continu-
ous field. The short-distance interaction is then encoded di-
rectly in the term In Z[ po].

Since this formulation is exact, the partition function is
independent of the choice of €. To proceed, make the follow-
ing approximations: (1) use the mean-field approximation for
the long-distance interaction (saddle point in ¢), and (2) ex-
pand the effective potential In ZJ[p,] as described below.
Making these approximations, the theory will lose its inde-
pendence of the choice of ¢, and there will be a “best” ¢
whose value gives the closest agreement with the full theory.
In principle, its value should be determined by optimizing
the error between a loop expansion on the long-distance in-
teraction and perturbative corrections to the short-distance
expansion. On physical grounds, however, I argue that €
~1 BQZ, or, in other words, € is the distance over which fixed
counterions interact with an energy of kz7T. Counterions at
separations larger than this interact weakly, and mean-field
theory is likely valid above this length scale. In addition, the
distinction between short and long length scales should not
depend on the geometry of the fixed charge distribution, and
can therefore only depend on the Bjerrum length and coun-
terion valence. For concreteness, I will choose € =1 BQ2. This
choice will be justified later by exploring the behavior of the
counterion density in different asymptotic regimes.

The mean-field approximation, given by 8S/6¢=0, re-
sults in the equation

V2~ 02V + 4mip0*(p(r)) = nr)dmlpQ.  (9)

I have performed the Wick rotation ¢— i¢ for convenience.
This equation has a similar structure to the Poisson-
Boltzmann (PB) equation: ¢ is the potential for the long-
range interaction and is determined by solving a modified
Poisson equation. While I will consider different approxima-
tions for the ion density {p), I will not attempt to go beyond
the mean-field approximation for ¢ in this paper.

III. THE SHORT-DISTANCE INTERACTION
A. Recovering the SC expansion

It remains to find a suitable approximation for {p(r)). The
SC expansion can be reproduced by expanding In Zp,] in
powers of py(r), utilizing the Mayer cluster expansion [20].
In terms of {p(r)), this gives the formula

<p(r)>=po(r)(1 +fd3r'02(1‘—1")90(1")+ ) (10)
up to second order, where v,(x)=1-¢""s®.

It is instructive to consider this expansion in the limit that
€ — o, Here, I will state without proof (it will be shown
explicitly later) that ¢ becomes constant in this limit. This
can be understood by considering that, in this limit, the
short-distance potential V(r) carries all of the counterion
interactions and the continuous field corresponding to the
long-distance interaction necessarily becomes unimportant.

For a charged surface with surface charge density o,
ndr)=0d(z)/Q, leading to
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where A=1/(27lzQ0) is the Gouy-Chapmann length for the
surface. Equation (11) comes directly from expanding F(z)
in powers of z and noting that terms of order z%/(lz€) and
higher are small in this limit. With this substitution, expan-
sion (10) is then seen to reproduce the SC expansion. Notice
that each term of this expansion diverges as the coupling
constant I'=1,0?/\=27l30Q> — o, indicating that the coun-
terion interactions are not small; this divergence can be ab-
sorbed by shifting x> and utilizing overall charge neutrality

[18].

B. The counterion-hole expansion

For a charged surface, it will prove more useful to con-
sider the variable Spo(r)=po(r)—&(z)/(27lzQ*\) rather than
po(2). This has the property that [dz Spy(z)=0 due to overall
charge neutrality, and yields

1 n
ZS = 2 ; f H dzradZaH %O(raaza)
n : a=1 o

x exp(— > vs(ra—r,;;za—zB))Zp, (12)

a<f3

where r, indicates the position of a counterion projected to
the surface, z,, its distance from the surface, and 8py(r,,z,)
=(exp[-2;V,(r,—1;.2,)]),6p0(r,.2,). Here, (-+-), is the av-
erage taken with respect to the partition function

1 2 O
Zp:E _<m> fHdzriexp(—z Vs(ri_rj;o))-

!
m M- i=1 i<j

(13)

The expression {(exp[-Z;V,(r,~r;;z,)]), represents the inter-
action of a charge at coordinates (r,,z,) with a layer of
counterions at positions (r;,z;=0). In deriving Eq. (12), I
have assumed

<1;[ exp(- 2 V., - ri;za>)>)
~ 1} <exp(— 2 Vs(ra—lr,-;za)>> .

P

This assumption has the physical content that counterions
making excursions away from the surface (z>0) are uncor-
related with each other. This will be valid as long as counte-
rions that are far from the surface interact weakly, something
that is manifestly true in the WC limit and also accurate if
most of the ions are close to the surface (so that very few
ions make large excursions) as they are in the SC limit.
Performing a cluster expansion with respect to 8p, yields

041512-3



CHRISTIAN D. SANTANGELO

In Z.Y[¢]=fd3r 5;30(1')(1 +%fd3r’v2(r—r’)6ﬁo(r’)

+> (14)

Terms higher than zeroth order vanish in the limit I' — < as
the density becomes S-function-like and dpy—0. As I'—0,
these corrections also vanish because €38p,— 0, and the in-
teractions become predominantly long ranged.

It is useful to define

&2
— Ze{(z)—d)(z) (15)
47TZBQ

Po
with

expl(r.2)] = <exp(F<z> S ve- r,-;o>)>. (16)

The function {(z) can be interpreted as the short-distance
interaction potential of a charge at height z with the charged
surface and with a layer of counterions at z=0. Therefore, it
encodes the response of the counterions at z=0 to the pres-
ence of a charge at z>0, and is reminiscent of the TCT [19].
One difference between {(z) and the TCT, however, is that
{(z) also depends, at least in principle, on the short-range
structure of the counterions induced by the short-range inter-
action.

In order to complete the analysis of this expansion, it
remains to generate a model for {(z). Here, I will develop a
simple approximation leading to reasonable quantitative an-
swers by putting in the correlation hole structure “by hand.”
Though this will not constitute a systematic approximation to
{(z), my approach has the advantage of physical clarity lead-
ing to quantitative results. A more sophisticated analysis is,
of course, possible but beyond the scope of this paper.

I assume that each counterion at z>0 interacts with a
uniform distribution of charge at z=0 containing an induced
circular correlation hole of radius ry=vQ/o. This approxi-
mates the size of a vacancy in a locally ordered lattice of
counterions at the surface, which should be valid when I’ is
large. Thus,

1) = (N = eV, (1)

It is interesting that, for z<€, {(z)=T(1—-e0%)—z/\ is
dominated by the interaction of the counterions with the bare
surface and not the z=0 layer of counterions whose contri-
bution is of order ~z%/(\€)<<z/\. While one could develop
more sophisticated and systematic approximations, this will
turn out to be suitable for understanding the ion density for
sufficiently large I'.

IV. SOLUTIONS OF THE MEAN-FIELD EQUATION

To lowest order in the counterion-hole expansion, (p)
~py=Kk*0(2)ef@=9@ and the mean-field equation for a
charged surface now reads
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FIG. 1. The normalized density difference n(z)—npg(z) as a
function of z/\ for ['=0.01 for ions in a box of size L=121,0°.

&?q& - €25‘z‘¢ + K2®(Z)e§(z)—¢(z) =47l,008(z). (18)

For small z, {(z)—F(z) is analytic and can be expanded as a
power series in (z/€)?. On the other hand, F(z) is nonana-
Iytic at z=0 and contributes to the boundary conditions. This
additional contribution can be disentangled by defining ®
= ¢-F. In terms of ®, {(z) is replaced with {(z)—F(z) and
there is an additional source term on the right of Eq. (18) of
the form —47TZBQ0'€207§5(z). This equation encodes two
boundary conditions:

lim 9,8 (z) - lim 3,8 = 9,®|} = 4700,

z—0+ z—0—
0. 05" - 230t = 4mlp00. (19)
In terms of the original ¢, the boundary conditions are
.40t =0,
-3 l0 = 4mlz00. (20)

Charge neutrality, [dz «’exp[{(z)—¢(z)]=4mlzQ0, is en-
sured for any solution to Eq. (18), as can be seen readily by
integrating both sides of the equation.

Equation (18) is difficult to solve analytically. Therefore, I
will consider approximate solutions in both the WC and SC
limits. In the WC limit, I assume the solution will decay with
characteristic length \, with A> £ =[,0?. The fourth-order
derivative is negligible and, since {(r)<<1, ¢ takes the
Poisson-Boltzmann form

H(z>0)=21n(1 + kz/\2). 1)
The boundary conditions are satisfied by choosing
dz<0)=2(L/N)A(7 - 1), (22)

where ¢?A%/\*~A=1. This requires k\/2=A. The approxi-
mate nature of this solution is apparent, as it does not respect
charge neutrality. However, as I'—0, ¢(z<0)—0, and Egq.
(21) becomes exact. To verify this prediction, I have solved
Eq. (18) for I'=0.01 in a box of size L=12[30Q?% with the
boundary condition that ¢ and its first three derivatives are
continuous across z=L. In Figure 1, I have plotted the dif-
ference between the solution of Eq. (18) and the numerical
solution to the Poisson-Boltzmann equation in a box and
found that they agree very well. For convenience, I have
plotted n(z)—npg(z), where n(z)=2m7lz0°\*(p(z)) and
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FIG. 2. Normalized density difference n(z)—ng(z) as a function
of z/\ for I'=1000. The solid curve gives the result from solving
Eq. (18) while the dashed curve is the renormalized first-order cor-
rection derived from the SC expansion (it has been multiplied by a
factor of 20, as is needed to agree with simulations for this coupling
constant [22]).

npp(z)=2mlE0°N?ppp(z) is  the normalized Poisson-
Boltzmann density [in a semi-infinite system, npg(z)=1/(1
+2)?]. Thus, n(z) is normalized so that n(0)=1 if the system
exactly obeys the contact value theorem.

In the SC limit, the fourth-order term dominates over the
second-order term near the surface. I make the additional
assumption that ¢<<1, and solve

Ciftp= k25D = 1 2EOI, (23)

which has the solution
2y 4
N
$(z>0) = K{Teﬁ‘))(e—z’A —1). (24)
Applying the boundary conditions, I find that

Pz <0)=- 7 [exp(z/ €) - 1], (25)

2\
(1 =N\

2
K= @ - 40l (26)

The counterion density is given by {(p)= k?e?@=#3  For
large I', we have (p)=(2/\?)e~#* and the exponential SC
density is recovered for large I'. This solution also becomes
exact as ['—o, and can be verified by plotting the exact
numerical solution for very large I'. This also verifies the
statement in Sec. III that ¢ becomes constant and unimpor-
tant in the limit of € — .

I plot the difference between the density at I'=103 and the
exact SC density in Fig. 2. It is known from numerical simu-
lations that the first-order SC correction has the wrong mag-
nitude [22]. The analytical first-order SC correction has,
therefore, been multiplied by 20 to find the dashed curve in
Fig. 2, as is needed to find agreement between the SC theory
and numerical simulation. Here, we see that Eq. (18) does
not predict the correct form for this difference (especially
because of a small deviation of the contact density at z=0),
but does naturally predict the correct magnitude for this
difference.
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FIG. 3. Normalized density difference n(z)—npg(z) as a function
of z/\ for I'= (a) 1, (b) 10, and (c) 100. Solutions to Eq. (18) (solid
line) are compared to numerical simulations from Ref. [22] (dia-
monds) and the TCT from Ref. [19] (dashed line).

For z> ¢, {(z)<1 even in the SC limit. The solution to
Eq. (18) must therefore transition to that given by Eq. (21).
The fourth-order derivative can be neglected in this limit
because k is exponentially suppressed by £(0) being large.
Therefore, the density at large distances is PB-like and is
controlled by a renormalized Gouy-Chapman length, A,,,
=\2/k=N\exp[£(0)]. This is in agreement with the argu-
ments of Burak et al. [19], which also exhibit a crossover to
a slow decay far from the surface. Using {(z), I obtain the
estimate

In(\,,/\) = T(1 = ¢ V250D 27)

I have also solved Eq. (18) numerically for I'=1, 10, and
100 in Fig. 3. These numerical solutions are compared to
actual simulation data from Ref. [22] (courtesy of A. Mor-
eira) and show quite good agreement. Furthermore, Eq. (18)
outperforms the TCT (shown as dashed lines using data pro-
vided by Y. Burak from Ref. [19]). The nonperturbative func-
tion {(z) is an important component of this numerical agree-
ment; when the original cluster expansion in powers of p is
used to compute InZ; [equivalent to setting {(z)=F(z) at
lowest order], the agreement with the simulation data is only
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FIG. 4. The difference in normalized contact density from the
exact contact density in an infinite box [given by n(0)=1] as a
function of coupling constant I'. The inset shows the normalized
contact density for I'<50.

slightly better than the TCT and not nearly as good as Fig. 3.
To be clear, the value for ry used in Fig. 3 is simply an
estimate of the real correlation hole size, which may differ
up to a factor of order 1 depending on the model used.
Though there is still good agreement for other reasonable
values of ry, ry=\VQ/ o seems to give the best agreement with
simulations.

It is important to realize, however, that for I'=10, the
TCT agrees with the simulation data better in the
intermediate-distance region. A possible reason for this is
clear: at these distances, the approximation of a counterion
interacting with a correlation hole used to compute {(z) be-
gins to fail because the average correlation hole size will
decrease. This is something the TCT evidentally captures in
the '=10 case. A more careful evaluation of {(z) is likely to
improve the quantitative agreement in this distance regime. I
also note here it is the failure of the TCT to agree with the
exact contact density that leads to its disagreement with
simulations. In Fig. 4 T plot the error n(0)—npg(0) between
the contact value found by solving Eq. (18) and its exactly
known value 1/(27lzQ*\?) in an infinite half space. From
this figure, it is seen that the contact values approach their
exact result as I' increases, but that deviations for 10<T
<100 are still quite small.

V. DISCUSSION

Notice that the crossover in Eq. (18) is governed by €/\
rather than T'=15Q?/\. This further corroborates choosing
€=1,0°. Changes in € merely shift the crossover between
strong and weak coupling, and the predicted counterion den-
sities do not depend too sensitively as long as € changes by
a factor of order 1.

The SC expansion can be reconstructed in this framework
as an asymptotic expansion around the € — o0 limit by con-
sidering the higher-order terms in 8p, for In Z,. This is seen
by substituting the asymptotically exact result pg
=e M (2mlzQ*\?) into {p)=py(1+A,+---). The first-order
correction A, gives a contribution
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Alzfd3r’v2(r—r’)<ﬁo(z')— 5(Z'))- (28)

270\

Using the identity Ae™* *=d(e™<")/dz’, it is possible to
extract the divergences from the first term in Eq. (28). I
integrate z' in the first term by parts, then utilize the replace-
ment 7' — —z, resulting in

A :szr'&zvz(rl -1’ 2-2)\py(Z). (29)

In the limit € — o, the boundary term in the integration by
parts diverges. Yet this divergence is regularized by finite ¢,
and cancels exactly with the & function in Eq. (28). The part
that remains yields exactly the finite part of the first-order SC
correction in the limit of € — [18]. T conjecture that the
higher-order corrections also agree with the finite part of the
strong-coupling expansion. The full solution to Eq. (18) must
lead to an effective resummation of the SC expansion, yield-
ing numerical corrections that are the right magnitude. A
more systematic accounting of these corrections, as well as
the loop corrections, is left for future work [24].

The counterion-hole expansion suggests a physical picture
for the SC corrections: these corrections arise from the inter-
actions between only those counterions that have made ex-
cursions away from the wall, as measured by p,. It is clear
that the density of these excited counterions becomes small
for large I, as the SC limit becomes exact. The function {(z)
encodes the interaction of these excitations with their z=0
correlation holes, and becomes important at intermediate
coupling, once counterions get far enough from the surface.
The effect of the correlation holes on the counterion density
is a fundamental component of the strongly coupled Cou-
lomb fluid picture [3]; here, as in the TCT, it emerges natu-
rally. However, in Eq. (18) the behavior of the correlation
hole is put in by hand. Though this leads to reasonable quan-
titative agreement, a more complete theory for the correla-
tion holes should lead to even better quantitative agreement
with simulations.

It is also interesting to note here that, since d(In Z)/d€
=0, one can derive a hierarchy of identities relating averages
of ¢ to derivatives of the short-distance partition function Z,.
These relations resemble the Ward-Takahashi identities in
quantum field theory arising from the existence of symme-
tries [25]. Whether these identities can be exploited to under-
stand further the interplay between short and long length
scales in charged systems is unknown to me. One possibility
is to set £ quantitatively by enforcing one or more of these
identities after evaluating the terms within the framework of
some approximation scheme.

The decomposition between short- and long-distance in-
teractions also provides a natural framework to compute
the counterion free energy at intermediate coupling.
This is given by F=S(i¢p)— uN/(kgT), where N is the num-
ber of counterions, ¢ is the mean-field long-range potential,
and the chemical potential is related to k> by pu
=kyT In[k%a’/ (47lz0%)]. Since «* depends exponentially on
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£(0), nonperturbative correlations also play a role in the free
energy, and subsequently in the interaction between two sur-
faces at separations where the SC expansion cannot be ap-
plied. This will be explored in a future publication.

To summarize, I have computed the counterion density
around a charged surface using a scheme to decompose the
Coulomb interaction into short- and long-distance compo-
nents. Each is treated with different approximations. For
large I", we recover the SC results and for small T" we re-
cover the WC Poisson-Boltzmann density. At intermediate
coupling, the model agrees reasonably well with the simula-
tion data, though it depends on a nonperturbative correlation
correction whose form we have only estimated. These corre-
lations also play a role in determining the renormalized

PHYSICAL REVIEW E 73, 041512 (2006)

Gouy-Chapman length when the densities recovers its
Poisson-Boltzmann form far from the surface.
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